Cluster Structure Inference Based on Clustering Stability with Applications to Microarray Data Analysis
نویسندگان
چکیده
This paper focuses on the stability-based approach for estimating the number of clusters K in microarray data. The cluster stability approach amounts to performing clustering successively over random subsets of the available data and evaluating an index which expresses the similarity of the successive partitions obtained. We present a method for automatically estimating K by starting from the distribution of the similarity index. We investigate how the selection of the hierarchical clustering (HC) method, respectively, the similarity index, influences the estimation accuracy. The paper introduces a new similarity index based on a partition distance. The performance of the new index and that of other well-known indices are experimentally evaluated by comparing the “true” data partition with the partition obtained at each level of an HC tree. A case study is conducted with a publicly available Leukemia dataset.
منابع مشابه
Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملPrediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods
Slope stability analysis is an enduring research topic in the engineering and academic sectors. Accurate prediction of the factor of safety (FOS) of slopes, their stability, and their performance is not an easy task. In this work, the adaptive neuro-fuzzy inference system (ANFIS) was utilized to build an estimation model for the prediction of FOS. Three ANFIS models were implemented including g...
متن کاملA Stability Based Method for Discovering Structure in Clustered Data
We present a method for visually and quantitatively assessing the presence of structure in clustered data. The method exploits measurements of the stability of clustering solutions obtained by perturbing the data set. Stability is characterized by the distribution of pairwise similarities between clusterings obtained from sub samples of the data. High pairwise similarities indicate a stable clu...
متن کاملBootstrapping cluster analysis: assessing the reliability of conclusions from microarray experiments.
We introduce a general technique for making statistical inference from clustering tools applied to gene expression microarray data. The approach utilizes an analysis of variance model to achieve normalization and estimate differential expression of genes across multiple conditions. Statistical inference is based on the application of a randomization technique, bootstrapping. Bootstrapping has p...
متن کاملVariable selection in clustering via Dirichlet process mixture models
The increased collection of high-dimensional data in various fields has raised a strong interest in clustering algorithms and variable selection procedures. In this paper, we propose a model-based method that addresses the two problems simultaneously. We introduce a latent binary vector to identify discriminating variables and use Dirichlet process mixture models to define the cluster structure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2004 شماره
صفحات -
تاریخ انتشار 2004